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Three-wave nonlinear coupling among spatial Fourier modes of density and magnetic fluctuations is

directly measured in a magnetically confined toroidal plasma. Density fluctuations are observed to gain

(lose) energy from (to) either equilibrium or fluctuating fields depending on the mode number.

Experiments indicate that nonlinear interactions alter the phase relation between density and magnetic

fluctuations, leading to strong particle transport.
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Magnetic-fluctuation-induced particle transport is an
increasingly important topic in astrophysics [1] and high-
temperature laboratory plasma research [2]. For magneti-
cally confined fusion plasmas, magnetic fluctuations
arising from microtearing modes [3], global tearing modes
[4], and energetic-particle-induced instabilities [5], as well
as from external-coil-induced resonant-magnetic perturba-
tions used to mitigate edge-localized modes [6], can all act
to enhance particle transport. In addition, magnetic fluctu-
ations leading to a stochastic magnetic field have also been
observed in recent gyrokinetic simulations of the drift-
wave type of turbulence, after inclusion of finite pressure
effects [7]. The effect of magnetic fluctuations on particle
transport is predicted to increase with � (ratio of plasma
pressure to magnetic field pressure) and to be important for
burning plasmas where 3.5 MeV � particles are available
to drive instabilities [8]. Understanding the physics of
particle transport associated with magnetic fluctuations is
critical for maintaining plasma confinement, density con-
trol, and impurity exhaust in burning plasmas like those in
ITER and beyond.

Direct measurements of magnetic-fluctuation-induced
transport in high-temperature plasmas are rare [4], being
largely limited by methods available to access the hot
plasma core. Recent measurements [9] have established
that magnetic-fluctuation-induced particle transport, aris-
ing from the correlated product of density and magnetic
fluctuations, is the cause of the density profile relaxation
during quasiperiodic relaxation events (or sawtooth
crashes) in the reversed-field pinch (RFP). Despite differ-
ent magnetic topologies, sawtooth crashes in RFPs and
tokamaks have many common features, including density
and current profile relaxation as well as increased turbu-
lence [10,11]. During the crash, the RFP magnetic field is
strongly stochastic and the phase between density and
magnetic fluctuations is observed to change so as to induce
transport. In addition, the observed particle transport [9] is

much larger than expected from the quasilinear prediction
[12] for ambipolar particle transport in a stochastic field,
suggesting that coherent, nonlinear, mode-mode interac-
tions might serve to drive this transport.
Nonlinear interactions between density and electrostatic

potential fluctuations associated with drift-wave turbu-
lence have been extensively studied previously ([13,14],
and references therein). In this Letter, we report on direct
measurements of a broad spectrum of nonlinear three-wave
interactions between density and magnetic fluctuations
associated with global tearing instabilities. Energy ex-
change between different spatial Fourier modes resulting
from nonlinear interactions acts to drive or damp density
fluctuations, depending on the mode number. These mea-
surements reveal that the effects of nonlinear three-wave
interactions are comparable to linear advection where
energy exchange with the equilibrium density gradient
occurs. Nonlinear interactions are observed to alter the
phase relation between density and magnetic fluctuations
so as to drive large particle transport.
Following a similar approach as in Ref. [15] and starting

from the continuity equation for incompressible electrons
(r � ve ’ 0), we can write

@ne
@t

þ ve � rne ’ Se; (1)

where ne, ve, and Se are the electron density, velocity, and
source term, respectively. ne and ve can be decomposed
into their equilibrium (n0 and v0) and fluctuating (~nk and
~vk) components, i.e., ne¼n0þ�k~nk and ve¼v0þ�k ~vk,
where k ¼ ðm; nÞ andm and n are the poloidal and toroidal
mode numbers, respectively. Here, we focus on the radial
velocity fluctuations (~vr) associated with particles stream-
ing along the fluctuating magnetic field. From the field line

equation, we obtain ~vr ¼ vek ~br=B0, where vek denotes the
parallel electron drift velocity along the field line, ~br is the
radial magnetic fluctuation, and B0 is the equilibrium
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magnetic field. After substituting the decomposed ne and
ve into Eq. (1), multiplying by ~nk1 , substituting for ~vr, and

performing an average h. . .i over the magnetic flux surface,
we have the energy equation for electron density fluctua-
tions:

1

2

@h~n2k1i
@t

’ �vek
B0

h~nk1 ~br;k1i
@n0
@r

� vek
B0

X
k1¼k2�k3

�
~nk1

~br;k2
@~nk3
@r

�
: (2)

Contributions from the source, higher-order nonlinear
interactions (such as four-wave coupling), and dissipation
effects are not considered. The left-hand side of Eq. (2) is
the power term describing the temporal evolution of modal
energy residing in ~nk1 . The first term on the right-hand side

represents linear advection, which accounts for the energy
exchange between ~nk1 and the equilibrium density gradient

@n0=@r. This term can also be written as ��k1@n0=@r,

where �k1 ¼ vekh~nk1 ~br;k1i=B0 is the particle flux resulting

from fluctuations with k1. The second term on the right-
hand side results from nonlinear advection. It is a triple

product of three fluctuating quantities (~nk1 ,
~br;k2 , and

@~nk3=@r) and describes the nonlinear three-wave interac-

tion among fluctuations with mode numbers k1, k2, and k3.
Depending on the sign, the linear and nonlinear advection
terms can act to drive or damp density fluctuations. In the
following, we report on direct measurements of each term
in Eq. (2).

Our experiments have been conducted in the Madison
Symmetric Torus [16], a toroidal device with major radius
R ¼ 1:5 m and minor radius a ¼ 0:52 m. All data pre-
sented herein are for deuterium RFP plasmas with toroidal
plasma current 400 kA and central line-averaged electron
density 1� 1019 m�3. Multiple magnetic tearing modes
resonate in these plasmas. Modes with m ¼ 1 and n ¼
5–12 resonate inside the reversal surface, r=a < 0:8.
Beyond this surface, the toroidal magnetic field re-
verses direction. Modes with m ¼ 0 and n ¼ 1–4 resonate
at the reversal surface, where the electron temperature
is �150 eV. The plasma exhibits a quasiperiodic
‘‘sawtooth’’ relaxation cycle evident in many quantities
[17]. The cycle consists of a slow ramp (� 4 ms) followed
by a rapid relaxation or crash (� 100 �s) during which the
tearing modes spike to their maximum amplitudes.
The multiple magnetic islands associated with these
modes overlap, leading to a stochastic magnetic field
[18] accompanied by strong density relaxation and particle
pump-out [9].

Although tearing modes have localized resonant sur-
faces, their associated density (~nk) and radial magnetic

fluctuations (~br;k) have a global extent. All ~nk’s peak near

the reversal surface where the equilibrium density gradient

(@n0=@r) is large [19], while ~br;k peaks near the corre-

sponding resonant surface [20]. Measurements shown
herein were obtained near the reversal surface where
m ¼ 0modes are maximum. To illustrate typical behavior,

the root-mean-square (rms) values of ~n, ~br, their relative
phase �~n~br

, and the magnetic-fluctuation-induced particle

flux �k ¼ vekh~nk ~br;ki=B0, for the ðm; nÞ ¼ ð1; 10Þ mode,

are shown in Fig. 1. The measurements are accomplished
by using a high-speed, laser-based, polarimetry-
interferometry diagnostic. The line-integrated measure-
ments from the outermost chord are localized to the edge
region (0:8 � r=a � 1). Standard interferometry is em-
ployed to measure the equilibrium density profile and
density fluctuations. Electron drift velocity along the field
line (vek) is determined from vek ¼ Jk=ðen0Þ, where Jk is
the parallel plasma current density and e is the electron

charge. Radial magnetic fluctuations ~br, equilibrium mag-
netic strength B0, and Jk are each determined by measuring

the Faraday effect [20,21]. Detailed descriptions of the
measurement and analysis techniques have been previ-
ously published [9,22]. For t � �0:2 ms, well before the
sawtooth crash at t ¼ 0 ms, although ~n [Fig. 1(a)] and
~br [Fig. 1(b)] have finite amplitude, their relative phase
�~n~br

[Fig. 1(c)] is close to �=2, resulting in a low particle

flux [Fig. 1(d)]. However, at t ¼ �0:06 ms, just before the

crash, �~n~br
deviates from �=2 as ~n and ~br amplitudes

increase, leading to maximum particle flux at the crash.
Similar observations have been made for the other m ¼ 1
modes. This burst in flux causes density profile relaxation
and particle pump-out [9].

FIG. 1. Temporal evolution of the (a) rms value of density
fluctuation (~n), (b) rms value of radial magnetic fluctuation (~br),
(c) phase between ~n and ~br, and (d) magnetic-fluctuation-
induced particle flux from the ðm; nÞ ¼ ð1; 10Þ mode at
r=a� 0:8 during the sawtooth cycle. Crash occurs at t ¼ 0.

PRL 108, 175001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 APRIL 2012

175001-2



Addressing the intriguing question of why the fluctua-
tion amplitudes and phase spontaneously change at the
crash requires investigation of driving and damping
mechanisms of the density fluctuations through measure-
ment of all terms in Eq. (2). To evaluate the linear and
nonlinear terms, in addition to the results from Fig. 1,
measurements of @n0=@r and @~nk=@r are required.
@n0=@r is obtained by taking the gradient of the inverted
line-integrated density profile, while @~nk=@r is directly
measured by using a novel differential interferometry tech-
nique [22]. The amplitude of @~nk=@r tracks that of ~nk and

peaks at the crash. After obtaining ~nk1 ,
~br;k2 , and @~nk3=@r,

their triple product can be quantitatively determined. The
sign and amplitude determine the direction and strength of
energy flow among the modes involved in the nonlinear
interaction and are critical to understanding the underlying
mechanisms of the three-wave process.

Evaluation of Eq. (2) for the ðm; nÞ ¼ ð1; 10Þ mode
reveals that each of the three terms grows significantly at
the sawtooth crash, as shown in Fig. 2. Interestingly, the
measured power term is much smaller than the linear
and nonlinear advection terms, remaining below 0:2�
1040 m�6 s�1. The magnitude of the linear and nonlinear
terms begins to change at t ¼ �0:06 ms before the crash,

when ~n and ~br amplitudes increase, and their relative phase
begins to deviate from�=2 [see Figs. 1(a)–1(c)]. The linear
term is large and positive (1:5� 1040 m�6 s�1 at t ¼
�0:02 ms), which indicates that the ð1; 10Þ mode is line-
arly unstable as it gains its energy from the equilibrium
density gradient @n0=@r. In contrast, the nonlinear term is
negative with comparable amplitude, indicating that the
nonlinear interaction is a sink of energy which is trans-
ferred away from the ð1; 10Þ mode to other modes through
three-wave interactions. Within experimental uncertainty,
the sum of the nonlinear and linear advection terms equates
with the power term, thereby balancing Eq. (2).

Similar analysis of Eq. (2) has been performed for all the
dominant modes as shown in Fig. 3. Here we observe the
mode spectra of linear and nonlinear terms averaged over
the time interval �0:04 to �0:02 ms before the sawtooth
crash. The power term is always small, remaining less than
15% of either the linear or nonlinear terms. The cause of
the density fluctuations varies with the mode number as the
linear and nonlinear advection terms can be either driving
(positive) or damping (negative). Interestingly, the m ¼ 0
and n ¼ 1; 2; 3; 4 reversal-surface-resonant modes are all
linearly stable and nonlinearly driven. The m ¼ 1 core-
resonant modes exhibit less uniform behavior. Modes
(m ¼ 1 and n ¼ 5–10) with the longer wavelength and
resonant surfaces closer to the magnetic axis are linearly
unstable with nonlinear damping. Conversely, modes
(m ¼ 1 and n ¼ 11–12) with the shorter wavelength and
resonance closer to the reversal surface are nonlinearly
driven with linear damping. In almost all cases, the linear
and nonlinear terms are of opposite sign and roughly
balance, within measurement error. There is an apparent
energy imbalance for the ð0; 2Þ and ð0; 3Þ modes, as the
amplitude of the nonlinear term is about half that of the
linear term. This might be caused by three-wave interac-
tion from m � 2 modes excluded in our analysis or other
effects neglected in Eq. (2). Balancing linear and nonlinear
advection leads to the relation

�k1 ’ � Jk
en0B0

�
@n0
@r

��1 X
k1¼k2�k3

�
~nk1

~br;k2
@~nk3
@r

�
; (3)

revealing that the magnetic-fluctuation-induced particle
flux is affected by nonlinear interactions.
Many mode combinations can satisfy the sum rule (k1 ¼

k2 � k3) for the three-wave interactions, and the nonlinear
terms shown in Figs. 2 and 3 are summed over all combi-
nations. For example, the nonlinear interaction spectrum
for the ðm; nÞ ¼ ð1; 10Þ mode is shown in Fig. 4, at t ¼
�0:02 ms, when the nonlinear interaction is strongest. The
nonlinear term is negative, and the energy is transferred

FIG. 2 (color online). Temporal evolution of the (a) power
term and (b) linear (black line) and nonlinear (red line) advection
terms for the ðm; nÞ ¼ ð1; 10Þ mode at r=a� 0:8 during a
sawtooth cycle. Crash occurs at t ¼ 0.

FIG. 3 (color online). Spectra of linear and nonlinear terms.
Data are averaged over the interval t ¼ �0:04 ms to t ¼
�0:02 ms before the sawtooth crash.
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away from the ð1; 10Þ mode. The three-wave interactions
with ð1; 9Þ and ð1; 11Þ modes have the largest amplitudes,
indicating that the interaction is dominated by coupling
with nearby or adjacent modes through the ð0; 1Þ mode.
Smaller contributions come from the ð0; 2Þ and ð0; 3Þ
modes. Similar observations have been made for the other
m ¼ 1 modes. To further explore the role played by the
ð0; 1Þ mode, we have compared sawtooth cycles where the
ð0; 1Þ mode peaks at the crash with those where the ð0; 1Þ
mode exhibits no burst, as shown in Fig. 5(a). Both crash
types occur spontaneously, although those with large ð0; 1Þ
bursts are more typical. For these events, the core-resonant
m ¼ 1 modes also behave differently, as seen in Figs. 5(b)
and 5(c), for the ð1; 7Þ mode. Measurements demonstrate

that the magnetic-fluctuation increase is less pronounced
and no significant particle flux is induced for the sawtooth
crash where the ð0; 1Þ mode burst is not evident.
Furthermore, comparison of the equilibrium density evo-
lution [see Fig. 5(d)] reveals that density relaxation (de-
crease of the central density at r� 0 and increase of the
edge density at r=a� 0:8) is no longer observed when the
ð0; 1Þ mode amplitude is unchanged at the crash. For
sawtooth crashes where the ð0; 1Þ mode is not evident,
there is no burst in particle flux and no change in equilib-
rium density. Combining this observation with the non-
linear spectra in Fig. 4 confirms the importance of the ð0; 1Þ
mode in mediating nonlinear three-wave interactions.
The nonlinear interaction is important in two aspects.

First, it is responsible for phase deviation from �=2 and
increased particle transport, confirming Eq. (3). If only
linear advection exists, the phase between density and radial
magnetic fluctuations remains near �=2 and only weak
particle transport is induced. Second, the nonlinear interac-
tion provides the balance for the linear advection in Eq. (2).
While the measurements presented herein were made in

the environment of a stochastic magnetic field created by
nonlinearly interacting tearing modes, Eq. (2) applies
whether or not the field is stochastic. The particle transport
described in this Letter is intrinsically associated with the
coherent interaction of magnetic and density perturbations,
implying that magnetic-fluctuation-induced particle trans-
port could arise even in the absence of magnetic stochas-
ticity. This may explain why electron transport during the
sawtooth crash can exceed the ambipolar-constrained
value expected for parallel streaming in a stochastic mag-
netic field [9].
In conclusion, direct experimental measurements of

linear advection and nonlinear three-wave interactions
have been made, revealing their effect on density fluctua-
tions and magnetic-fluctuation-induced particle transport.
Strong nonlinear coupling among global magnetic pertur-
bations is approximately balanced by linear advection
during reconnection and leads to enhanced particle
transport.
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